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Structure-based antiviral developments in the past two years

have been dominated by the structure determination and

inhibition of SARS-CoV-2 proteins and new lead molecules for

picornaviruses. The SARS-CoV-2 spike protein has been

targeted successfully with antibodies, nanobodies, and

receptor protein mimics effectively blocking receptor binding or

fusion. The two most promising non-structural proteins sharing

strong structural and functional conservation across virus

families are the main protease and the RNA-dependent RNA

polymerase, for which design and reuse of broad range

inhibitors already approved for use has been an attractive

avenue. For picornaviruses, the increasing recognition of the

transient expansion of the capsid as a critical transition towards

RNA release has been targeted through a newly identified,

apparently widely conserved, druggable, interprotomer pocket

preventing viral entry. We summarize some of the key papers in

these areas and ponder the practical uses and contributions of

molecular modeling alongside empirical structure

determination.
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Introduction
Since the beginning of the Severe Acute Respiratory

Syndrome Coronavirus 2 (SARS-CoV-2) pandemic in
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2019, there has been a race between antiviral drug design

and vaccine development to combat the disease.

Although vaccines won the race, lowering the risk of

severe infection, there is still a need for antiviral drugs,

driving research for SARS-CoV-2, and other significant

viral pathogens. The literature in the past two years has

been dominated by studies utilizing computational meth-

ods to identify SARS-CoV-2 antivirals [1–15]. In this

Opinion we focus on SARS-CoV-2 and picornaviruses,

and antiviral leads where structural data have contributed

significantly to the design or interpretation of the antiviral

mechanism and led to insightful information for future

structure-based drug design.

SARS-CoV-2
SARS-CoV-2 belongs to the Coronaviridae family, a family

of pleomorphic ss(+)RNA viruses. Its genome is associ-

ated with the N protein forming the nucleocapsid, coated

with a spike glycoprotein-adorned membrane [16]. The

most promising drug targets against SARS-CoV-2 have

been the spike glycoprotein (S) and the non-structural

components: the main protease (Mpro), the papain like

protease (PLpro), and the RNA-dependent RNA poly-

merase (RdRp) [7,17–23]. For the non-structural, highly

conserved proteins, drug repurposing and broad range

inhibition was an attractive approach [3,11,18–22,24–

28,29�,30��,31–45]. S, as a surface protein is antigenic

and is prone to mutations [17]. A complementary strategy

of inhibiting host proteins required in infection is exem-

plified by the use of soluble peptides mimicking the

angiotensin-converting enzyme (ACE2) receptor binding

domain (RBD) [46,47].

Picornaviruses
The noticeable structural and functional conservation

between the proteases and polymerases of SARS-CoV-

2 and those of picornaviruses has led to research focusing

on broad-range inhibitors targeting both families. Picor-

naviruses are a family of small, 30 nm icosahedrally

symmetric viruses with (+)ssRNA genome. The capsids

consist of three b-barrel viral proteins (VP1, VP2, and

VP3) and one elongated internal protein, VP4. Many of

the viruses in the family have a conserved hydrophobic

pocket in VP1 that can contain a lipid factor [48,49].

Several picornavirus inhibitors target this conserved

pocket, preventing genome release, but none of the

inhibitors are currently in clinical use [50]. We will

describe advances targeting a novel interprotomer capsid

pocket instead.
www.sciencedirect.com
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Structure of SARS-CoV-2 Mpro and coxsackievirus B3 3Cpro bound

with inhibitors.

(a) Surface representation of SARS-CoV-2 Mpro (PDB: 6LU7) with

monomers in blue and magenta. Catalytic diad is marked in yellow

and inhibitor in cyan. (b) Close up of the active site residues and

interactions with the inhibitor N3 [30��]. (c) Close up of the active site

and the inhibitor N3 showing active site subsites with yellow circles

and inhibitor positions marked P10-P5 [30��]. (d) Surface representation

of coxsackievirus B3 3Cpro in magenta with inhibitor 11a in cyan and

catalytic triad in yellow (PDB: 3ZYD) [24]. (e) Close up of the active

site residues and interactions with inhibitor 11a. (f) Close up of the

active sites and the inhibitor 11a showing active site subsites with

yellow circles and inhibitor positions marked P10-P3 [24].

Figure created in UCSF Chimera [87]. (Mpro = main protease, 3Cpro =

3C protease).
Drug-repurposing and computational
structure-based drug design
Drug-repurposing has rapidly advanced SARS-CoV-2

antiviral approaches avoiding lengthy clinical drug

approval processes, building on work done to inhibit

SARS-CoV, MERS-CoV, hepatitis C and so on.

Amongst the drugs which have shown the most prom-

ising results and have gone on to clinical trials are the

hepatitis C antivirals, telaprevir, narlaprevir and boce-

previr inhibiting Mpro and remdesivir, ribavirin, sura-

min and favipiravir riboside triphosphate (RTP) against

the RdRp [31–34,44,51]. SARS-CoV-2 Mpro was a very

promising target at the start of the pandemic and its

potential and the advances made have been extensively

reviewed: Mengist et al. reviewed their toxicology and

the structural basis for their inhibition while some other

reviews have focused on their potential for clinical use

and future prospects [18–22,39,40]. Like many other

non-structural proteins, Mpro is highly conserved in

structure and substrate specificity across the Coronavir-
idae family as well as some other virus families, like the

Picornaviridae. Both Mpro and the picornaviral 3Cpro

have chymotrypsin-like folds and cleave the viral poly-

protein into functional proteins, which in turn are

involved in viral replication. SARS-CoV-2 Mpro is a

homodimer with a Cys-His catalytic dyad between

two domains (Figure 1a). Mpro compared to 3Cpro has

an additional a-helical domain connected by a loop to

the catalytic site. Its substrate-binding pocket subsites

and the corresponding inhibitor positions are shown in

Figure 1c. Unlike SARS-CoV-2 Mpro, 3Cpro is a mono-

mer and has a Cys-His-Glu/Asp catalytic triad

(Figure 1d). Both proteases require Gln as the P1

residue in the substrate and only have space for a small

amino-acid residue at P10 (Figure 1) [30��,35,36]. For

this reason, inhibitors targeting SARS-CoV Mpro and

picornavirus 3Cpro were used as templates for design of

SARS-CoV-2 Mpro [24,26,30��,35–38,41,52,53].

Over 1000 Mpro structures have now been deposited in

the PDB giving an unprecedented opportunity for

detailed data mining. Although Mpro is catalytically active

as a homodimer, almost all modeling studies have been

based on the monomeric structure. Weng et al. (2021),

however, utilized and validated the effect of dimers for

inhibitor binding on the molecular level [54]. The initial

excitement over repurposing of protease inhibitors has so

far not led to effective clinical use and this may well be

partially due to the little knowledge on how dimerization

affects the inhibitor binding region.

The RdRp has also been explored as a target for drug

repurposing [18,20,27,29�,43,45]. It is a vital enzyme

transcribing RNA from its complementary template.

Structurally, it resembles other right-hand polymerases

consisting of 3 conserved domains termed the palm,

fingers and thumb (Figure 2). The structural similarity
www.sciencedirect.com 
of the RdRp across families of RNA viruses was recently

used by Mönttinen et al. to create a phylogenetic tree.

SARS-CoV-2 RdRp clusters with several flaviviruses and

hepaciviruses, adding weight to repurposing the previ-

ously mentioned inhibitors remdesivir, suramin and riba-

virin, all developed as hepatitis C antivirals [25]. Struc-

tural characterization of the SARS-CoV-2 RdRp started

with the description of the complex with accessory factors

nsp7 and nsp8 [27,28]. Complexes with the RNA tem-

plate and finally with the nucleotide-analog remdesivir

(Figure 2) progressively improved the understanding of

RdRp activity and the mechanism of nucleotide-based
Current Opinion in Virology 2021, 51:16–24
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Figure 2
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SARS-CoV-2 RdRp with nsp7, nsp8, RNA template and remdesivir.

(a) Surface and (b) ribbon view of RdRp structure with color-coded

domains labelled. (b) Remdesivir can be seen in the active site. (c)
Close up view of remdesivir and its location in the RdRp.

Pyrophosphate (PP) is marked in orange and is a byproduct of the

remdesivir-inhibited reaction [34]. Figures created in UCSF Chimera

[87] from PDB:7BV2. Nidovirus RdRp-associated nucleotidyl

transferase domain (NiRAN).
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SARS-CoV-2 spike glycoprotein conformational states, glycosylation

and binding of C144 and 47D11 Fab.

(a) Side and top view of a surface representation of the spike

glycoprotein in pre-fusion closed (PDB ID: 6XR8), pre-fusion open

(PDB ID: 6XM4) and post-fusion conformations (PDB ID: 6XRA)

[58,88]. RBDs are shown in orange and glycans in pink. (b) Side and

top views of the cryo-EM density maps showing C144 FAb complexed

to closed pre-fusion S (top; EMD-22737) and 47D11 FAb complexed

to pre-fusion S with 1 RBD up (bottom; EMD-11812) [66��,67�]. RBD in

cyan and RBS in yellow. One RBS in the S protein bound with 47D11

is exposed and accessible to ACE2. Black circle in the C144-S1

complex marks the position of the loop shown in (c). Black circle in

the 47D11-S complex marks the position of the loop shown in (d). (c)

Enlarged view of the residues involved in the hydrophobic pocket on S

protein RBD (cyan) and C144HC CDRH3 loop (purple) (PDB ID: 7K90)

[66��]. (d) Enlarged view of the residues involved in the hydrophobic

pocket on S protein RBD (cyan) and 47D11HC CDRH3 loop (purple)

(PDB ID: 7AKD) [67�]. Figures were made in UCSF Chimera [87].
inhibitors [27,34]. A cryo-EM structure with suramin

further indicates the potential for distinct chemical enti-

ties against SARS-CoV-2 RdRp [44]. The structural con-

servation between SARS-CoV-2 and flavivirus RdRp

indicates a potential alternative option for drug discovery:

two inhibitors targeting the flexible RNA tunnel have

been described for Dengue virus RdRp. The interacting

residues are largely conserved across flaviviruses and may

allow the design of broad-spectrum antivirals along with

those targeting the active site [55,56]. While the lack of

flavivirus RdRp structures in their catalytically competent

state represents a challenge for structure-based drug

discovery approaches, a recent structure of TBEV RdRp

helped to identify the differences in catalytic sites

between tick-borne and mosquito-borne flaviviruses.

These differences were shown to be vital in host recog-

nition, expanding the known RdRp roles in the infection

cycle [45,57].

Structural proteins as targets
Viral structural proteins are the first to interact with the

host whether by interacting with other proteins such as

receptors or antibodies, or the host environment in the

form of pH, ions or lipids. As such, they are prone to

mutations to evade the host immune system. In SARS-

CoV-2 infection, S protein attaches to the host receptor,
Current Opinion in Virology 2021, 51:16–24 
ACE2, and fuses the viral and cell membranes. The S

trimer (Figure 3), has monomers composed of S1 and S2

domains which are cleaved by furin making the spike

fusion-active. The receptor binding domain (RBD) on

S1 can be either in a ‘down’ conformation hiding the

receptor binding site (RBS) or in an ‘up’ conformation

exposing the RBS (Figure 3a). Upon binding to ACE2,

S2 undergoes conformational changes exposing the

fusion peptide, and S1 dissociates leaving the post-

fusion conformational state (Figure 3a) [58,59]. ACE2

glycosylation was shown to be important in its affinity for

S [62]. Co-receptors include transmembrane protease

serine 2 (TMPRSS2), and neuropilin binding the

cleaved S [60,61].

All newly emerging SARS-CoV-2 variants of concern have

amino acids changes that are being monitored in the S

protein RBD (https://www.who.int/en/activities/

tracking-SARS-CoV-2-variants/ accessed 10th August
www.sciencedirect.com
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2021). In vitro evolution driven to increase S protein’s

affinity to ACE2 managed to recreate the emergence of

the new variants of concern, Alpha, Beta and Gamma [47].

The authors showed that the ACE2 RBD domain was a

highly potent inhibitor competing with membrane-bound

host ACE2 for both existing strains and the newly pre-

dicted ones, confirmed by cryo-EM of existing strains

[47].

One approach for inhibiting the S protein is by neutral-

izing antibodies (NAb), but useful epitopes must take

into account the heavy surface glycosylation of S

(Figure 3a). Sikora et al. mapped the spike protein

glycans looking for unshielded epitopes using molecular

simulations. This resulted in a much larger covered area

than previously thought and suggests that the spike stalk

is not a favorable antibody target [63]. Casalino et al. have

done a similar mapping using all-atom molecular dynam-

ics, finding the importance of two glycans shielding the

spike RBD. The glycans play a role in changing the

spike protein from the closed to the open state, as after

their deletion, most spikes remained in the closed state,

unable to bind to ACE2 [64�]. Hence spike production

for vaccination or other functional studies on epitopes

needs to be done in mammalian cells for correct glyco-

sylation [65].

Based on the epitope location, NAbs’ mode of action can

be competition with ACE2 for the RBS on the RBD,

stabilization of the spike by binding distally to the RBS

either in an ‘up’ or ‘down’ conformation of the RBD

(Figure 3), and destruction of the spike by driving spike

conformation to post-fusion [66��,67�,68–70]. Barnes et al.
have tested and classified Covid19 patients isolated NAbs

which stabilize the spike or compete with ACE2 in three

classes based on the binding site [66��]. With the emer-

gence of new variants, a need for an antibody binding

distally from the RBS arose [67�]. One of the earliest

antibodies (CR3022) tested against SARS-CoV-2 was

shown to potently bind the RBD at an epitope which

is only exposed in the open conformation. Interestingly,

using cryo-EM, no density was observed for the CR3022

FAb on the ‘one up — two down’ S trimer conformation

which should have one epitope exposed. Instead, increas-

ing the sample time after antibody addition yielded a

homogenous population of post-fusion S proteins, sug-

gesting that CR3022 drives S1 dissociation [69]. A similar

mode of action has been observed for some Ebola anti-

bodies, where, as with CR3022, infection is partially

inhibited [69,71]. Together these findings indicate that

antibodies binding to an epitope away from the RBS,

stabilizing the pre-fusion closed S trimer, should be the

most effective (Figure 3). Successful vaccine production

is based on a similar principle, the S trimers are stabilized

in a pre-fusion conformation by substitution with double

proline and removal of the furin cleavage site [72]. Recent

advances have been made on exploiting S proteins
www.sciencedirect.com 
stabilized in the closed conformation to produce antibo-

dies which bind to epitopes distant from the RBS [73–76].

One such antibody is 47D11 stabilizing the S trimer in a

‘one up — two down’ conformation leaving one RBS

accessible to ACE2 (Figure 3b down, d). It binds in a

conserved hydrophobic pocket that is usually covered by

glycan N343 (Figure 3d). It stabilizes the glycan in an

upright position and inserts a CDRH3 loop in the pocket.

Its activity was also verified against newly emerging

SARS-CoV-2 variants [67�]. The C144 antibody has an

epitope which is accessible in both ‘up’ and ‘down’

conformations and upon binding it spans across adjacent

RBS and stabilizes the trimer in the closed conformation

(Figure 3b up). It contains the same loop as 47D11,

interacting with the hydrophobic pocket (Figure 3c).

Its binding site still partially overlaps with the RBS

(Figure 3b up) and it is not effective against all variants

indicating that this approach should be explored further

[66��].

Nanobodies and aptamers offer alternative, potentially

cheaper, easier, faster approaches to NAb. Nanobodies

are variable regions (VHH) of antibodies expressed alone.

Huo et al. and Xiang et al. have shown the potential of

nanobodies in inhibiting SARS-CoV-2 attachment to the

host cell [77,78]. By screening through the VHH library

against purified RBD Huo et al. discovered 2 nanobodies

H11-H4 and H11-D4 with binding sites which partially

overlap with the RBS. H11-H4 and H11-D4 both bind to

the RBD in ‘up’ and ‘down’ conformations, stabilizing the

S protein in ‘one up — two down’ state as shown by

isothermal titration calorimetry (ITC) and X-ray crystal-

lography [77]. Xiang et al. noticed this effect was

increased when using multivalent nanobodies [78]. Koe-

nig et al. produced multivalent nanobodies that when

bound resulted in an irreversible, fully open conformation

preventing S binding to the receptor. What is more, they

have tested the activity in evolutionary mutants and

discovered that a homotrivalent nanobody was not effec-

tive after a single mutation, however a multivalent nano-

body targeting different epitopes significantly hindered

the emergence of mutants [79��]. More recently, syn-

thetic nanobodies competing with ACE2 have shown

their effectivity in hamsters [80].

Aptamers have shown potential to compete with ACE2 as

nasally administered drugs [81]. For Nab, nanobodies and

aptamers, the neutralization efficacy can be computation-

ally predicted, measured through binding assays like

ELISA, structural studies, pseudovirus or virus neutrali-

zation in cell culture, before going on to animal trials.

Experience over the past two years has emphasized that

even efficacy in ELISA does not necessarily correlate to

infection inhibition in cell culture [68].

One of the central themes in inhibition of virus entry is to

prevent conformational changes required to release the
Current Opinion in Virology 2021, 51:16–24
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Picornavirus’ newly identified conserved site bound with inhibitor

17 bound to CVB3 and glutathione to EV-F3.

(a) Electron density map of CVB3 at 2.8 Å-resolution bound with an

inhibitor (compound 17) radially colored according to the key in Å,

viewed down a two-fold axis of symmetry. The position of the inhibitor

is shown in orange. Two protomers are shown in light and dark grey

[83��]. (b) Detailed view of the interprotomer position of compound

17 in CVB3, with one protomer shown in dark grey and the second

protomer in light grey surface with the atomic models of VP1 (green),

Current Opinion in Virology 2021, 51:16–24 
genome such as the efforts to prevent SARS-CoV-2 S

fusing with the host membrane described above. In

picornaviruses, it has long been recognized that expan-

sion of the capsid and exposure of VP1 and VP4 termini

help in releasing the genome into the cytoplasm triggered

by albumin, ions, receptor binding and/or pH. Long-term

efforts to stabilize the picornaviral capsids by binding

molecules to the VP1 hydrophobic pocket have recently

been complemented by the description of another drug-

gable pocket conserved in enteroviruses (Figure 4). The

interprotomer pocket 16 Å away from the VP1 hydropho-

bic pocket, can accommodate small molecules, which

stabilize the capsid in viruses belonging to Enterovirus

A [82,83��,84,85]. A series of compounds were active in

cell culture preventing virus infection, some of the resi-

dues involved in binding are conserved, and essential,

others could be mutated, but with a subsequent reduction

in viral viability. Initial studies with CVB3 have recently

been taken to higher resolution, including a new atomic

model with a broader range inhibitor bound to CVB4

[82,83��]. Duyvestyen et al. showed that glutathione,

previously identified as a common cellular factor involved

in enterovirus capsid assembly, binds to a similar site on

enterovirus F3 (Figure 4d) [86].

Conclusions
Antivirals targeting vital non-structural viral proteins pre-

vent replication or polyprotein maturation. As their tar-

geted conserved sites are different from the host’s, any

antivirals targeting them should have reduced chances for

off-target activity. Drug repurposing and design of broad

range inhibitors are attractive approaches for finding

antivirals against such targets. This has yielded a list of

antivirals with partial efficacy across many targets, and

sped up the search for SARS-CoV-2 inhibitors tremen-

dously. In the case of remdesivir, it provided a quick

remedy for the most critical patients in their recovery very

early in the pandemic. The structural proteins, as they are

exposed to the immune system, are prone to mutation.

Therefore, specific inhibitors, rather than broad range

inhibitors, are more common. Antivirals targeting struc-

tural proteins target the receptor attachment, membrane

fusion and/or genome release, thus stopping infection at

an early stage. Here, most success has been seen with

antibodies, especially through the successful COVID-19

vaccine campaign targeting S. This strategy necessitates

constant updating of the diagnostics, antivirals and
VP2 (blue) and VP3 (cyan) shown in ribbon [83��]. (c) Close up view of

compound 17 and interactions with the CVB3 site residues (PDB:

6ZCL) [83��]. (d) Close up view of a similar site in enterovirus-F3 as in

(c) with glutathione in the position corresponding to compound 17 in

CVB3 (PDB: 6T4C) [86]. (a) and (b) are adapted and reproduced with

permission from Flatt et al. [83��], both under a Creative Commons

Attribution 4.0 International License. (c) and (d) were made with UCSF

Chimera [87].
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vaccines to ensure that variants of concern are susceptible

to these proven measures. In the long run, as long as any

particular virus is widespread in the population, new

variants will continue to emerge, some of which will be

resistant. Therefore, a combined approach that utilizes

both preventative and therapeutic measures will be of

benefit. To search for antivirals, virtual screening and

other modeling methods have been heavily exploited.

Unfortunately, most of the published modeling-oriented

studies lack wet lab experimental validation. This is, in

our opinion, insufficient, since any molecular modeling

method alone cannot reliably predict biological activity.

Commonly, molecular dynamics simulations are too short

(they should be on the microsecond scale) and are carried

out with too simplistic systems, for example, with many

proteases, such as Mpro, monomers have been used in the

majority of studies, while dimers are biologically relevant.

Whereas structural methods and binding affinity assays

support our understanding of the mechanisms behind

biological activity assays in cell culture and animal mod-

els, alone they are insufficient to infer inhibitor efficacy.

One cannot forget the importance of host factors in the

virus infection cycle and viral surface protein glycosyla-

tion, metastability and dissociation when designing anti-

virals. All of these factors may contribute to the lack of

efficient antivirals so far in clinical use. The methods and

models, for example, organoids used for screening, need

improvement, alternative targets, especially targeting

host factors that are not so prone to mutation, need to

be explored more systematically, and continual monitor-

ing of circulating virus variation should all contribute to

the field in the near future.
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